
number; C c is a semi-empirical constant; Cx, Cxp , Ccf are the frontal, profile, and friction 
drag coefficients. The subscript T is for turbulence. 
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HELICAL WAVES IN A LIQUID FILM ON A ROTATING DISK 

G. M. Sisoev and V. Ya. Shkadov UDC 532.516 

The stability of steady-state axisymmetric flow against non-axisymmetric pertur- 
bations is considered. 

A number of experimental and theoretical studies have been made on wave generation in 
a liquid film moving on the surface of a rotating flat disk [1-7]. The stability of the 
limiting stationary solution for a relatively thin film was studied in [2, 3, 6, 7], using 
an asymptotic method [2, 3, 7] or a numerical method [6]. In this paper we study the stab- 
ility of the main flow, for which the Ekman number [2] is finite; we can point out that 
interest in such modes stems from the desire to increase the productivity of technological 
processes employing the given form of film flow. 

Suppose that a viscous incompressible liquid is fed at a constant flow rate Q near the 
center of a rotating disk. The flow of the film formed on the disk is described by the 
functions 

__ ( ) u~ PJ h- h~ u~ 1 uo 1 , w p , 
U =  ~2r6Z' v =  6 z ~r  QHc62 pQZH~ He ' 

where 6 = Hcr and 6 -a is the Ekman number. As independent variables we use the quantities 
x = in(r/R), 8, y = z/H c and s = ~t/62 The system of equations and boundary conditions for 
determining u, v, w, p, and h is given in [3]. 

The hypothesis of local plane-parallelism [3] is used to study the stability of steady- 
state axisymmetric flow Ul(x, y), Vz(x, y), and Hl(x), obtained numerically [8], in which the 
initial thickness of the film at r = R is used as the characteristic quantity Hc; the non- 
stationary solution in this case is written as [6] 

u(x ,  O, y, s ) = U x ( x o ,  g ) + H ~ u l ( ~ ,  O, ~, ~c), v = V ~ + H 2 o v ~ ,  

H~ H~ 
w ---- - -  w i, p ~ Pl, h = H i -~- Hohi, 

E o 8 o 

(i) 

where x 0 = in(r0/R), H 0 = Hl(x0), s0 = g(x0), $ = (x - x0)/(g0H0), D = y/H0, and T = s/H~. 
Substituing solution (i) into the initial equations and boundary conditions and linearizing, 
we obtain a problem for small perturbations, which have wave solutions of the form [l(~, 0, N, 

T) =[2(~)expf(~ +n@--~T1), where T I = ReT, Re = U,H,/v, H* = HcH0, and U, = r0~2H~/~. After 
some manipulations, we can obtain the following problem for amplitude functions: 
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Fig. i. Gains at x o = 2: I) 

= 0.01, 2) 0.12, 3) 0.32. 
Fig. 2. Gains at x 0 = 
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[ 4il3~ (i~.--V Re)] v-- v" - -  ~z2B3 + itz Re E q- 2e, (U Re - -  irz) if- aB'---'--~. " 

i{3e, . . . .  _ ie, 
aB2 ,z -r- - ~ 2  [iat3 Re E + c~2~B3 --~ 2 Re (e,~U - -  l/)] W' + 

+ B1 Re (e,~U' - -  V') m ------ 0, 
B2 

~ l = O : w =  w ' ~  v ~  O, 

~l:= l:w"+Bl[~zz-- t (U"--2icce*U)] 

v' + i ~z~e, - -  (V" - -  2ta~e,U) w = O. 

+ R e  i~E+2s, U+---~I V w'+ WeE w +  

+ 2i~ze, ( Bj + @ ) (icz~%-- VRe)v= O. 

(2) 

where E, = e0H0, We = pU~H,/c, U = UI/H~, V = V!/H ~ + D -2, D = 6H 0, E = U - c + e*SV, B l = 
i - 2i~,/a, B 2 = B I + (e,8) 2, B 3 = I + (~,~)2, 6= n/a and c = ~/~. A prime in Eqs. (2) 
denotes differentiattion with respect to the variable n and the subscript of the functions 
v 2 and w 2 has been omitted. The velocity components of the main flow depend on x 0 as parame- 
ter. We note that in [2, 6] problem (2) is considered without terms of the order of O(e,, 
D4), which corresponds to relatively thin films. 
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TABLE i. Eigenvalues of Per- 
turbations with Largest Gains 

at x0 = 2 and at Given Values 
of 

n ~r a i  

0,01 
0,06 
0,12 
O, 18 
0,32 

--44 
--23 

25 
82 

O, 153 
0,151 
O, 152 
O, 154 
O, 154 

TABLE 2. Eigenvalues of Per- 
turbations of the Second Kind 

at x 0 = 0.2, n = 1 

0,0025 
--0,0278 0,0055 
--0,0276 0,0100 
--0,0275 0,0130 
--0,0272 
--0,0263 

0,0143 
0,0301 
0,0545 
0,0713 

--0,00217 
--0,00247 
--0,00198 
--0,00112 

As the parameters of the problem for the eigenvalues of (2) we use the quantities ~,, D 

and F = p4~-I-~-/0, with Re ~ D4/g,, and We = FD7/e~. We consider time-periodic perturbations, 
i.e., we calculate the complex wave numbers a for given real values of m and integral -n; 
the flow is unstable if solutions with ~i < 0 exist (here and below the subscript i cor- 
responds to the imaginary part of the quantity and r corresponds to the real part). The 
numerical method [6] is used to solve (2). 

The stability is studied on the example of the flow of a film of water over the surface 
of a disk rotating with angular velocity ~ = 8 rps; we assume that the flow rate Q = 15"10 -6 �9 
ma/s and that the film thickness H c = 15.10 -s m at R = 0.025 m; the indicated values cor- 
respond to the conditions of the experiments in [2]. The initial profiles of the velocity 
components for calculating the steady-state flow are chosen in the form 

U~ (0, y )= 2~R2Q~.tt~ g -  , V ~ -  5~-; 

the number of flow lines, used in the numerical method of [8], is N = i0. 

Problem (2) is solved for some values of x 0 to obtain qualitative conclusions about 
the shape of the waves in the flow under consideration; examples of the calculations are 
given in Figs. 1 and 2. 

At x 0 = 2 (r 0 = 0.185 m) the main flow virtually coincides with the limiting flow [2, 3, 
6, 8], with e, = 0.236"i0 -a and D 2 = 0.0957. The solutions of (2), obtained by the parametric 
continuation of the eigenvalues from [6], show that at n = 0 (concentration perturbations) the 
largest gain -~i = 0.0274 is reached at m = 0.12 (to within 0.01), with a r = 0.156 and c r = 
0.77. From Fig. 1 it follows that as decreases the largest value of -ai shifts to the region 
of negative values of n (Table i), to which there correspond perturbations that at a fixed 
time are helices which untwist in the direction of disk rotation. Since perturbations for 
which the assumption of local plane-parallelism is not valid correspond to large values of 
[n], such solutions are physically meaningless; e.g., at m = 0.01 the increment of the radius 
per turn about the axis for the most unstable perturbation at a fixed time is 0.0984 m, i.e., 
is comparable with the characteristic flow radius. From Table 1 it follows that the values 
of ~r at the "vertices" of cross sections of the surface - ~i by the planes m = const are 
similar. From the reported results and the hypothesis that perturbations with maximum gain 
can occur it can be concluded that in the section x 0 = 2 the waves correspond to ~r = 0.15- 
0.16 and some positive value of n, whose determination involves a more refined estimate of 
the change in the main flow along the radius. 

Figure 2 shows the graphs of the gains at x 0 = 0.2 (r 0 = 0.0305 m); the main flow has 
the parameters s, = 0.649.10 -2 and D 2 = 1.97 and a numerical velocity profile, given by the 
coefficients of the Chebyshev-series expansion of its components. Curves 1 and 2 correspond 
to perturbations obtained by the parametric continuation of the results of [6]. Analysis of 
the solutions, similar to that carried out for the cross section x 0 = 2, shows that some non- 
positive value of n and ar = 0.25-0.26 correspond to the perturbation with the largest gain. 

Shkadov [3] showed that at certain values of the parameters the problem of the stabil- 
ity of a film on a disk is close to the corresponding problem for a gravitational film for 
which approximate unstable and stable solutions exist. The parametric continuation of the 
unstable solution was considered above. The continuation of the second solution for the 
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problem of a film on a disk reveals that it can pass into the unstable region; perturbations 
of this type correspond to curves 3 and 4 in Fig. 2; examples of eigenvalues are given in 
Table 2. 

Numerical analysis in the cross section x 0 = 0.2 shows that perturbations of the second 
kind are unstable at n > 0, i.e., only helical waves untwisting in the direction opposite to 
the disk rotation are possible. Small values of ~r [the break in curve 4 (Fig. 2) is due to 

passage to ~r < 0] lead to a more stringent limitation on the values of n than for perturba- 
tions of the first kind, because the homogeneity of the main flow is disrupted. 

Waves of two types are observed in the experiments; concentric waves moving from the 
center of the disk [i, 2, 4, 5] and helical waves that untwist in the direction of disk rota- 
tion and are immobile with respect to the disk; these waves exist during the flow of rela- 
tively thick films [i, 2]. Perturbations of the first kind can be assigned to the concentric 
waves. Immobile helical waves do not appear in the local model used, which includes the 
hypothesis that perturbations with the largest gain occur, since if they are for them to be 
stationary relative to the disk they must satisfy the condition n = mD2/g,, and, hence, n > 0, 
but the requirement about the direction in which these helical waves untwist determines that 
n < 0. It seems that this mode is an example of steady-state axisymmetric flow. 

Waves, found by solving (2), which correspond to perturbations of the second kind are 
not described in the experimental studied. The difficulty encountered in observing them when 
they do exist stems from the fact that they correspond to rather thick films, whose steady- 
state flow is characterized by oscillations of the free surface [8]. We point out that heli- 
cal waves which untwist in the direction opposite to the rotation of the disk can be almost 
immobile relative to the disk. For example, the "stationary" frequency for the flow at x 0 = 
0.2 for n = 1 considered above is m = ne,/D 2 = 0.0033 and from Fig. 2 it follows that the 
value lies in the region of instability. 

NOTATION 

Here ~ denotes the angular velocity of the disk; p, ~, and o are, respectively, the 
density, kinematic viscosity, and the surface tension of the liquid; t is the time, r, 8, 
and z is the fixed cylindrical coordinate system bound to the axis of rotation of the disk, 
u r, us, and u z are the velocity components; pf is the pressure, hj is the film thicknees; R 
is the minimum radius of the flow region; r 0 is the value of the radius at which stability 
is studied; H c is the characteristic film thickness, and s = Hc/r. 
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